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Magnetohydrodynamic pipe flow 
Part 2. High Hartmann number 

By J. A. SHERCLIFF 
Department of Engineering, University of Cambridge 

(Received 27 February 1962) 

The paper presents an improved, second approximation for the laminar motion of 
a conducting liquid at high Hartmann number in non-conducting pipes of 
arbitrary cross-section under uniform transverse magnetic fields. A satisfactory 
comparison with the author’s previously published experimental pressure 
gradient/flow results is made for the case of a circular pipe. 

1. Introduction 
The laminar flow of highly conducting liquids in pipes under uniform trans- 

verse magnetic fields was first examined by Hartmann (1937), although Williams 
(1930) had studied the flow of electrolytes under the same conditions somewhat 
earlier. 

From the practical standpoint the problem is interesting because of the 
occurrence of pipe flow under transverse fields in magnetohydrodynamic pumps, 
generators, accelerators and flowmeters, while the academic interest arises 
because the problem is a linear one, reasonably easy to analyse and exhibiting 
one of the basic phenomena of magnetohydrodynamics, viz. the tendency of a 
magnetic field to suppress vorticity perpendicular to itself, in competition with 
viscosity tending to promote vorticity. The Hartmann number M or Ba(cr/r)* is 
well known to measure the extent to which the magnetic field prevails in this 
contest. The quantities B,  a, cr and 7 are the imposed magnetic field, a typical pipe 
dimension, the fluid conductivity and viscosity respectively. When M is large, 
as it usually is in practice, the result of the contest is that the flow consists of a 
core devoid of vorticity perpendicular to the field surrounded by a viscous 
boundary layer in which the velocity falls rapidly to zero at the wall. 

This paper treats the high-M case, which has the attraction that it is one of 
those problems in M.H.D. that are easier to solve than their counterparts in 
ordinary fluid mechanics. At high M the problem may be solved equally easily 
for pipes of any cross-section. 

Chang & Lundgren (1961) did this for pipes with thin conducting walls, 
generalizing the author’s (Shercliff 1956) asymptotic solution by removing an 
unnecessary restriction on the magnitude of the wall conductivity. Braginskii 
(1959) had considered the case of perfectly conducting walls. Sakao (1962) has 
deduced good approximate solutions by using a variational principle due to Tani 
in the cases of perfectly- and non-conducting walls. In  this paper a second 
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approximation to the solution is developed in terms of corrections of order M-l 
in the case of non-conducting walls. This leads to an agreeably good comparison 
with the author’s (1956) experimental results for the flow of mercury through a 
circular pipe under a transverse field. 

2. The second approximation 
The first approximation (Shercliff 1953,1956) involved two assumptions, which 

are corrected in the second approximation: (a) viscous forces are negligible in the 
core, and (b) the velocity defect in the boundary layer is negligible in the evalua- 
tion of the flow rate Q and mean velocity vo. Both (a) and (b)  give rise to errors of 
order M-l. We shall consider ( b )  first. 

The boundary layers 

The defect of volumetric flow rate per unit perimeter of wall is 

where v is the axial fluid velocity, v, its local core value and n is distance along the 
inward normal (see figure 1). The notation is the same as in the 1956 paper except 

Boundary y l  

loop I 

FIGURE 1. Cross-section of pipe. 

that the variables are not non-dimensionalized. In evaluating this correction it 
is adequate to use the first approximation value 

v = v,(l- exp ( - M n  cos @/a)}, 

which is equation (15) of the 1956 paper. The angle 0 is the inclination of the 
normal to the uniform transverse field. There are small regions where 0 approaches 
871. and where the boundary-layer theory fails. The flow defect per unit perimeter 
is seen to be av,/Mcos 0.  The’first approximation for v, (equation (24) of the 1953 
paper) may be used in this expression when the total flow defect is deduced by 
integration around the periphery. 

For a non-conducting circular pipe of radius a, the first approximation for v, 
is ( - a(p/az) a cos O / B ( q ) ~ ,  which is equation (17) of the 1956 paper with c = 0. 
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The axial pressure gradient ( - ap/az) is uniform over the cross-section. Here the 
flow defect per unit perimeter turns out to be constant and the total flow defect 
is simply 2na2( - ap/az)/B%. 

The core 
As in the first approximation, we continue to neglect vorticity in the core trans- 
verse to the imposed magnetic field, so that v, is independent of x, the co-ordinate 
parallel to the imposed field (see figure 1). That this gives rise to errors of lesser 
order will be verified later. We do, however, include the effect of viscous stresses 
associated with variation of v, with y. The balance of axial forces requires that 

Bj,, = - ap/& + yd2vC/dy2, a function of y only. (1) 

Here j ,  is the induced current density in the y-direction, j,, its value in the core. 
Over most of the core the last term is of order M-l compared with the others and 
represents the correction to the first approximation, where it was neglected. 

The balance of current flow across the line EG, of length f(y), in figure 1 
demands that 

f (y) jVc+ /(j, -j,,) dx (across boundary layer at  constant y) = 0, (2) 

since j, = j,, in the core and there is no current flow in the walls or across the 
y-axis if we assume symmetry of the cross-section. Since the boundary-layer 
thickness is of order f(y)/M we can with sufficient accuracy replace j,, by 
( - ap/ax)/B in the integral in ( Z ) ,  so that 

f(Y)j,, + /{j, - ( - a P / a w I d x  = 0. (3) 

The integral proves to be simply related to the core velocity. In  fact the first 
approximation here needs no correction. This is most easily seen if we consider 
the compound variable 

u = v + {H + ( - appz)  x p } / ( g ~ ) 4  

in which H is the axial induced field, equal to 

for pipe cross-sections that are symmetrical in the y-axis. Here we are using 
rationalized M.K.S. units. From equations ( 7 )  and (8) of the 1953 paper it follows 
that 

The solution to this equation has no boundary layer at the wall where x is positive, 
as has been pointed out by Wasow (1944) and Levinson (1950). The first approxi- 
mation is to take &/ax = 0 and u = F(y)  there, M being large. In  fact 

aupx + (a/iw) v2u = 0. (4) 

F ( Y )  = ( -  aP/aWY)/m& ( 5 )  

since v and H vanish at  the wall x = f (y). Evidently a2u/ax2 is negligible in com- 
parison with a2u/ay2, which is of order u/a2; provided f (y) is not constant and the 
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pipe not rectangular. Then (4) shows that au/ax is of order M-1 and that the 
change in u across the thin boundary layer at  constant y is of order M-2 and is 
therefore negligible in the second approximation. It follows that 

U,+(ay)-t {ju-( -appz)/B}dX = 0, (6) 

Vc = f (Y) ( - aP/az + r d 2 v c l d Y 2 ) l ~ ( ~ r ) 4  

s 
just as in the first approximation. Combining (l), (3 )  and (6) gives 

(7) 

a differential equation for v,. We are not so much interested in the detailed 

variation of u, as in the volumetric flow integral 2 w, f (y) dy, taken over the whole 

cross-section since the boundary-layer defect has already been evaluated. 
Inserting (7) directly into the integral gives the first approximation 

s 

plus the viscous correction term 

which may be integrated twice by parts to give 

because dvc/dy must be finite and f (y) and u, vanish at  the extremes of y. Also 
d{f(y)}2/dy will be finite there unless the curvature of the wall is zero. In the 
correction term ( 8 )  it is adequate to use the first approximation for v,. 

If we specialize to the case of a circular pipe, f (y) = (a%- y2)i, and ( 8 )  becomes 

-: soau$y = - 2na2( - ap/az)/B2a, 

which, by a coincidence, is equal to the boundary-layer defect. 
The final expression for the flow rate Q, incorporating both corrections, is 

and the resultant expression for the mean velocity is 

Figure 2 is a reproduction of the author’s (1956) experimental results to which 
the plot of (9) has been added. Agreement is well within the errors of the original 
measurements, not only for the most accurate ones where M = 121 but also even 
when M is rather too small for (9) to be good enough. The agreement at  low M is 
evidently fortuitous because of the failure of the graph to connect smoothly with 
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the chain-dotted curve that represents the exact Bessel-function solution 
(Uflyand 1960; Uhlenbusch & Fischer 1961; Gold 1961) evaluated by Gold in 
the preceding paper. Note that the vertical scale is large and exaggerates the 
discrepancy, however. 

The core flow correction may be arrived at  in other ways. One is to take 
equation (4) and solve it iteratively in the form au/ax = - (a/&!) V2u,, where u1 is 
the first approximation ( 5 ) .  Alternatively, the first approximation to v, may be 

A1 

FIGURE 2. Non-dimensional (pressure gradient/flow) plotted against Hartmann number 
for circular pipes. 0, Experimental points (Shercliff 1956); --, graph of 1/(1- 3n/2M); 

, exact Bessel-function solution. 

inserted directly into the right-hand side of (7 ) .  Equally well the exact Bessel- 
function solution can be approximated at  high M to give the same expression for 
v,, as Gold (1962) has shown. These three methods have the slightly embarrassing 
feature that the resultant expression, 

21, = ( - apjax)  ( (G - y 2 ) t  - a 3 / ~ ( ~ 2 -  g)p(cvp, 
for a circular pipe, diverges negatively as y + a, although the flow integral does 
not because the contributions from the obscure regions near y = a are so small. 
For this reason, and because it is more physical, the method given in full above 
has been preferred. 

Finally we must check the initial assertion that v,maystillbe takenasafunction 
of y only. This may be done analytically from equation (4) but we shall adopt an 
equivalent but physically more instructive approach. 
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If V denotes electric potential, Ohm's Law has the components 

j,/a = - aV/ax and j J g  = - av/ay+ B ~ ,  

while continuity of current flow requires 

aj,/ax + aj,/ay = 0. 

In  the second approximation the viscous forces causejyc to vary with y, and this 
leads to currentsj, and variations of V and i3V/ay in the x-direction. Then (10) 
indicates variations of v, with x, since the effect of jvc variation with x turns out 
to be smaller by two orders in M .  In  other words, the viscous stresses in the core 
associated with vorticity parallel to the field also promote some vorticity across 
the field by electrical action. In  mathematical terms we have from ( l ) ,  with the 
7 a2v/i3x2 term still neglected, that 

Thus 

The last term is seen from (1)  to be 

B2ap a2 (a2vc) ax2 ' 
which is of order M-2 compared with the right-hand side of ( 1  1). It follows from 
( 1  1)  that x-wise variation of v, is of order M-2 and may indeed be neglected in the 
second approximation. 

To obtain a third, or better, approximation to the solution at  high M it would 
be necessary to scrutinize the obscure regions near y = a. 

The author is grateful to Dr R. Gold for reviving his interest in the problem and 
for pointing out the asymptotic form of the Bessel-function solution. 
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